Spontaneous chiral self-assembly of CdSe@CdS nanorods

نویسندگان

چکیده

•The helical structure of [email protected] nanorods was formed with achiral reagents•The stability chiral crystal dislocation calculated•Spontaneous symmetry breaking occurred in the self-assembly nanorod Spontaneous (SCSB) inorganic compounds is a fundamental issue origin biochirality prebiotic environment. Although spontaneous formation space groups, stacking faults, and dislocations has been extensively investigated, enantiomeric excess rarely considered for inorganics, which have long regarded as racemate. Here, we found lattice distortion reagents, assemblies were spontaneously organized during evaporation colloidal solution. These findings are likely to be phenomena that exist many substances drop hint studying chirality. The SCSB inorganics might provide extending information chirality other disciplines. phenomenon crucial homochirality nature, whereas reckoned racemates. report cadmium chalcogenide nanorods, leading biases away from In presence organics, (HCCNs) unidirectionally rotated lattices along rod axis stochastically on epitaxial interface {111}cub/{0001}hex planes. structures, supported by theoretical analysis their binding energies, suggested possibility emergence structures an Hierarchical films induced simple solvent HCCNs exhibited between batches, speculated originated seed assembly induce one-handedness dominated system based majority rules. Chirality manifest nature microscopic macroscopic world, fascinated scientists being linchpins natural phenomena. populations opposite surprisingly asymmetric at levels, ranging parity violation subatomic weak force biomolecules. process resulting non-preferential excess.1Avetisov V. Goldanskii Mirror molecular level.Proc. Natl. Acad. Sci. USA. 1996; 93: 11435-11442Crossref PubMed Scopus (182) Google Scholar, 2Ribó J.M. Crusats J. Sagués F. Claret Rubires R. Chiral sign induction vortices mesophases stirred solutions.Science. 2001; 292: 2063-2066Crossref (553) 3Soai K. Sato I. Shibata T. Komiya S. Hayashi M. Matsueda Y. Imamura H. Hayase Morioka Tabira et al.Asymmetric synthesis pyrimidyl alkanol without adding addition diisopropylzinc pyrimidine-5-carbaldehyde conjunction autocatalysis.Tetrahedron Asymmetry. 2003; 14: 185-188Crossref (209) 4Fasel Parschau Ernst K.H. Amplification two-dimensional enantiomorphous lattices.Nature. 2006; 439: 449-452Crossref (331) 5Karunakaran S.C. Cafferty B.J. Weigert-Muñoz A. Schuster G.B. Hud N.V. supramolecular polymers: implications biological homochirality.Angew. Chem. Int. Ed. Engl. 2019; 58: 1453-1457Crossref (43) 6Shtukenberg A.G. Drori Sturm E.V. Vidavsky N. Haddad Zheng Estroff L.A. Weissman Wolf S.G. Shimoni E. al.Crystals benzamide, first polymorphous compound, helicoidal.Angew. 2020; 59: 14593-14601Crossref (7) Scholar Whether or not imbalance enantiomers came about chance, amplification remains key increasing ultimately approaching homochiral state.7Morrow S.M. Bissette A.J. Fletcher S.P. Transmission through across length scales.Nat. Nanotechnol. 2017; 12: 410-419Crossref (126) Scholar,8Ribó Hochberg D. El-Hachemi Z. Moyano mirror homochirality.J. Soc. Interface. 20170699Crossref (34) To date, ligands physical chirality-induced diverse nanostructures widely studied9Li Zhou Wang H.Y. Perrett Zhao Tang Nie G. glutathione surface coating affects cytotoxicity quantum dots.Angew. 2011; 50: 5860-5864Crossref (179) 10Tohgha U. Deol K.K. Porter Bartko Choi J.K. Leonard B.M. Varga Kubelka Muller Balaz Ligand circular dichroism circularly polarized luminescence CdSe dots.ACS Nano. 2013; 7: 11094-11102Crossref (189) 11Moloney M.P. Govan Loudon Mukhina Gun'ko Y.K. Preparation dots.Nat. Protoc. 2015; 10: 558-573Crossref (89) 12Suzuki Elvati P. Qu Z.B. Kim Jiang Baumeister Lee Yeom B. Bahng J.H. al.Chiral graphene 2016; 1744-1755Crossref (205) 13Lee H.E. Ahn Mun Y.Y. Cho N.H. Chang W.S. Rho Nam K.T. Amino-acid- peptide-directed plasmonic gold nanoparticles.Nature. 2018; 556: 360-365Crossref (454) 14Yeom Santos U.S. Chekini Cha de Moura A.F. Kotov N.A. Chiromagnetic nanoparticles gels.Science. 359: 309-314Crossref (118) 15González-Rubio Mosquera Kumar Pedrazo-Tardajos Llombart Solís D.M. Lobato Noya E.G. Guerrero-Martínez Taboada al.Micelle-directed seeded growth anisotropic nanocrystals.Science. 368: 1472-1477Crossref (86) 16Liu Ai You X. Liu Tian Bou? Duan Han L. al.Enantiomeric discrimination surface-enhanced Raman scattering–chiral anisotropy nanostructured films.Angew. 15226-15231Crossref (25) 17Robbie Broer D.J. Brett M.J. nematic order liquid crystals imposed engineered nanostructure.Nature. 1999; 399: 764-766Crossref (229) 18Wei Xia G.J. Deng Sun Chruma J.J. Wu W. Yang C. Y.G. Huang Enantioselective photoinduced cyclodimerization prochiral anthracene derivative adsorbed metal nanostructures.Nat. 551-559Crossref (39) 19Li Yu Dai Urbas Li Q. Organo-soluble thiol-monolayer-protected nanorods.Langmuir. 27: 98-103Crossref (41) 20Ye Zhang Bisoyi H.K. Zhu Lu Solvent polarity driven helicity inversion aggregation emission fluorophores.Chem. 11: 9989-9993Crossref compared reports them. nanoparticle environment.21Bonner W.A. Kavasmaneck P.R. Martin F.S. Flores Asymmetric adsorption alanine quartz.Science. 1974; 186: 143-144Crossref (116) 22Lorenzo M.O. Baddeley C.J. Muryn Raval Extended molecules.Nature. 2000; 404: 376-379Crossref (516) 23Orme C.A. Noy Wierzbicki McBride M.T. Grantham Teng H.H. Dove P.M. DeYoreo Formation morphologies selective amino acids calcite steps.Nature. 411: 775-779Crossref (567) 24Hazen R.M. Sholl D.S. selection crystalline surfaces.Nat. Mater. 2: 367-374Crossref (381) It reported groups can generated, such NaClO3 P213,25Kondepudi D.K. Kaufman R.J. Singh sodium chlorate crystallizaton.Science. 1990; 250: 975-976Crossref (751) ?-HgS P3121 P3221,26Ben-Moshe Govorov A.O. Markovich intrinsically mercury sulfide nanocrystals.Angew. 52: 1275-1279Crossref (98) Te P3221.27Ben-Moshe Bar Sadan Houben Fan control shape using biomolecules.Nat. Commun. 2014; 5: 4302Crossref (139) Scholar,28Hananel Ben-Moshe Tal Enantiomeric nanocrystals.Adv. 32e1905594Crossref (10) Another type materials group generation defects second crystallization, point defects, dislocations, twining-induced curves mode twisting bending, morphology, e.g., ZnO plates columns,29Tian Z.R. Voigt J.A. Mckenzie Mcdermott Biomimetic arrays oriented columns.J. Am. 2002; 124: 12954-12955Crossref (494) Scholar,30Morin S.A. Bierman Tong Jin Mechanism kinetics nanotube screw dislocations.Science. 2010; 328: 476-480Crossref (254) PbSe nanowires octahedral building blocks,31Cho K.S. Talapin D.V. Gaschler Murray C.B. Designing nanorings attachment nanoparticles.J. 2005; 127: 7140-7147Crossref (1120) Au Boerdijk-Coxeter-Bernal structure,32Zhu He Shang Miao Chen boerdijk-coxeter-bernal structure.J. 136: 12746-12752Crossref (44) etc. faults33Gao P.X. Ding Mai Hughes W.L. Lao Z.L. Conversion zinc oxide nanobelts into superlattice-structured nanohelices.Science. 309: 1700-1704Crossref (841) dislocations30Morin Scholar,34Wu Cheng Katsov Sides S.W. Fredrickson G.H. Moskovits Stucky G.D. Composite mesostructures nano-confinement.Nat. 2004; 3: 816-822Crossref (604) 35Zhu Peng Marshall Barnett Nix W.D. Cui branched Eshelby Twist.Nat. 2008; 477-481Crossref (199) 36Mukhina M.V. Maslov V.G. Baranov A.V. Fedorov Orlova Purcell-Milton Gun’ko Intrinsic CdSe/ZnS dots rods.Nano Lett. 15: 2844-2851Crossref (128) 37Srivastava Critchley Podsiadlo Xu Lilly Glotzer Light-controlled semiconductor twisted ribbons.Science. 327: 1355-1359Crossref (296) considered, convention assume racemic mixture. Herein, investigated SCBS CdS assemblies. hexagonal noncentrosymmetric P63mc (No. 186 group). As typical semiconductor, band gap 2.4 eV tends form one-dimensional [0001]hex direction under high concentration monomers due reaction activity organics (0001)hex facet.38Hughes Alivisatos A.P. Anisotropic distribution faults II-VI nanorods.Nano 13: 106-110Crossref small diameter would lead easy axial direction. encapsulation core 1.7 shell large increases photoluminescence yield its heterojunction.39Borys N.J. Walter Lupton role particle morphology interfacial energy transfer CdSe/CdS heterostructure 330: 1371-1374Crossref (161) quantity introduced rods effective characterization. ?3.8 nm synthesized via hot-injection technique precursors, including wurtzite cores, trioctylphosphine (TOP), (TOPO), (TOPS), octadecylphosphoric acid (ODPA), n-hexylphosphonic (HPA), CdO (see experimental procedures section details). All proved pure (Figures S1 S2). wide-angle X-ray diffraction (XRD) pattern (Figure 1A) shows five major reflections 2? = 24.8°, 26.5°, 28.1°, 43.7°, 51.8°, assigned 101¯0, 0002, 101¯1, 112¯0, 112¯2 reflections, respectively, close-packing structure. Compared intensities reflection peaks bulk materials, 101¯0 112¯0 much stronger, while 0002 weaker, suggesting preferred orientation stack parallel substrate, further confirmed electron microscopy observations. solutions composed monodispersed single-crystalline average ?65 nm, shown transition (TEM) images 1B S3). detailed high-angle annular dark-field scanning transmission (HAADF-STEM) investigations. Figure 2A, energy-dispersive spectroscopy (EDS) linear scan showed (length 67 3.7 nm) uniform two sections CdSe. growth, cores size ?2.3 (determined Peng’s method,40Yu W.W. Guo Experimental determination extinction coefficient CdTe, CdSe, nanocrystals.Chem. 2854-2860Crossref (4614) S4) distributed 22 ? 25 40 48 regions nanorod. fine observed high-magnification HAADF-STEM image 2B), bright dot corresponds electrostatic potential area, namely, atoms. grain 2B mainly consists ABAB domains (blue 2B) bounded thin layers cubic ABCABC sequence (red phases blende, respectively. At boundary CdS/CdSe interface, determined EDS 2A), distorted arrangement observed, could mismatch lattice/basis fluctuation shaded areas 2B). worth noting continuous also this grain. A possible 3D model proposed explain observation, consisted intergrowth phase mixed zinc-blende 2D). connectivity S5. According model, contrast simulated image41Oleynikov eMap eSlice: software package crystallographic computing.Cryst. Res. Technol. 46: 569-579Crossref [112¯0]hex closely resembles results 2C). similarity comparing corresponding FDs (insets Figures This result suggests plausible structural characterized high-resolution TEM (HRTEM) [110]cub/[112¯0]hex direction, [111]cub/[0001]hex. Notably, only left part align zone axis, right region gradually tilted beam 3A1). Upon sequential left-handed tilting sample well-aligned (indicated red box) moved side 3A2–3A5). Fourier diffractograms (FDs) taken local positions judge alignment regions. right-handed approximate 6° rotation c over distance 72 angle ?0.08°/nm. Moreover, upon same S6), left-handedness feature found. reveal tried imaging single condition HCCN plane aligned highlighted. Initially, comparison conventional S7B1 S7A1). mark top-left corner S7A1, S7B2–S7B9), directly HCCN. addition, almost unchanged selected area patterns 9° indicate continuously understand HCCNs, change defect formation. Due heterogeneous composition protected], 3.8% expected {0001}hex planes phase, derived difference adjacent atoms layer (4.1365 Å 4.3000 CdSe). may interface. permanent dipole moment attraction cause merge, “oriented attachment” lowering total free suspension. If imperfect, it certain final products.42Tang Z.Y. Giersig organization CdTe luminescent nanowires.Science. 297: 237-240Crossref (1756) Scholar,43Nie Z.H. Petukhova Kumacheva Properties emerging applications self-assembled made nanoparticles.Nat. 15-25Crossref (1309) Scholar44Talapin Shevchenko Titov Kral Dipole?dipole interactions superlattices.Nano 2007; 1213-1219Crossref (292) noted above, nanocrystals original HCCNs. images, displayed 3B, viewed [1¯1¯1¯]cub/[0001¯]hex, three models show after relaxation (viewed [110]cub/[112¯0]hex, [211]cub/[101¯0]hex, perspective S8), obtained DMol3Soai program Materials Studio. translation [101¯0]hex operation (detailed modeling calculation S9–S13). translational operations subject restrictions within 5° 1.2 Å, considering requirements bond Cd-S (Tables 3Bi, atomic position bonding counterclockwise 3.2° perfect (gray colored below, [1¯1¯1¯]cub/[0001¯]hex direction). On hand, 5.6° 1.9° 3Bii 3Biii) criterion structure, energies ?83.48 ?83.19 eV, all ?83.47, ?83.24, indicating these thermodynamically stable (Table Thus, same. Similar clockwise CdS. 300°C evidenced samples different temperatures S14 S15). Both transmitted (CD) (CPL) spectra dispersed toluene solution silent signals, probably because racemate state too interaction selectivity light S16). significant purity smoothness quartz substrate examined XRD, (SEM), CD S17–S19). Smooth transparent simply facilely dropping subsequent evaporation. 4A absorbance (CCNFs) handedness. mirror-symmetrical CCNFs sharp negative peak centered ?466 shoulder ?430 ?380 relatively ?550 coinciding UV-vis bands. characteristic mechanism S20), include both absorption- scattering-based OAs. CCNFs, diffuse white background S21A) disappearance range 300–475 new 475–600 strong signals combination coupling OA (SOA) transition-based (ETOA). Bragg resonance optical air electronic states nanorods. black displays those spectra, confirming existence S21B), S22 S23). CPL 4B) ?567 antipodal redshift attributed hybridization edge orbitals artifacts, (LD) eliminated accumulation data generated 8 degrees 360° S24 S25). level hierarchical stochastic uncontrollable signal 18 experiments 4C). elimination procedure LD CD, LD, S26–S42 Table S4. OAs amplified assembly, but there no relationship handedness CCNFs. low-angle XRD 4D) well-resolved q values 0.20 0.37 nm?1, indexed first- second-order lamella interlayer ?5.2 nm. neighboring ?1.4 3.8 matrix microscopy45Goldstein D.H. Mueller dual-rotating retarder polarimeter.Appl. Opt. 1992; 31: 6676-6683Crossref (316) Scholar,46Pezzaniti J.L. Chipman R.A. polarimetry.Opt. Eng. 1995; 34: 1558-1568Crossref (177) (MMM, see S43 schematic drawing instrument) revealed banded concentric circle 4E1). paralleled textures superstructure crystals.47Wang McConney M.E. A.M. Bunning T.J. Visible-light-induced self-organized orientationally ordered fluids.Adv. 31e1902958Crossref (18) Scholar,48Wang B.X. Visible-light-driven halogen donor switches: reversible unwinding soft superstructures.Angew. 2684-2687Crossref value calculated whole picture 4E1 ?0.0245 rad, ri

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self - Assembly of Gold Nanorods

Self-assembly of gold nanorods (NRs) with aspect ratio of ∼4.6 (12 nm in diameter and 50-60 nm in length) has been studied using transmission electron microscopy (TEM). Under appropriate conditions such as nanoparticle concentration, solvent evaporation, narrow size distribution, ionic strength, and surfactant concentration of the parent solution, gold nanorods assemble into one-, two-, and thr...

متن کامل

Graphene mediated self-assembly of fullerene nanorods.

A simple procedure for solution-based self-assembly of C60 fullerene nanorods on graphene substrates is presented. Using a combination of electron microscopy, X-ray diffraction and Raman spectroscopy, it is shown that the size, shape and morphology of the nanorods can be suitably modified by controlling the kinetics of self-assembly.

متن کامل

Self-assembly of polymer-tethered nanorods.

We present results of molecular simulations that predict the phases formed by self-assembly of nanorods functionalized by a polymer "tether." Microphase separation of the immiscible tethers and rods coupled with the liquid crystal ordering of the rods induces the formation of a cubic phase, a smectic C phase, a tetragonally perforated lamellar phase, and a honeycomb phase; the latter two have b...

متن کامل

Self-assembly of laterally-tethered nanorods.

We report results from a computational study of laterally tethered nanorod "shape amphiphiles". Our simulations predict that the model nanorods self-assemble into stepped-ribbon-like micelles, a centered rectangular stepped-ribbon phase, and two structurally different liquid crystalline bilayer phases: one in which the bilayers have C(mm) symmetry and another in which they have P(2) symmetry. W...

متن کامل

493h Self-Assembly of Polymer-Tethered Nanorods

Mark A. Horsch, Zhenli Zhang, and Sharon C. Glotzer The need to organize nanoparticles into complex structures for applications ranging from electronics to solar energy utilization has focused increasing attention on the method of self assembly, whereby material building blocks self-organize into patterns based on thermodynamic principles. We performed molecular simulations to predict the phase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.06.009